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Abstract

This note explores asymmetries in the way consumers sample prices in a
simple variation of Stahl’s (1989) seminal model of sequential search. In the
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local consumers selects prices from a distribution which first order stochasti-
cally dominates that of its rival and contains mass at the upper bound of firm
price distributions. Both firms exhibit higher prices as the proportion of con-
sumers local to one firm rises, though surprisingly, at the limit, the Diamond
paradox may not manifest.
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1 Introduction

Recent work in sequential search tells us that search order matters, but that its effect

on pricing depends fundamentally on the underlying modeling framework. For in-

stance, using the heterogeneous product match setup developed by Wolinsky (1986),

Armstrong et al. (2009) show that when all consumers begin search at a prominent

firm, that firm will charge a lower price than its less prominent rivals.1 Conversely,

Arbatskaya (2007), working in a model with homogeneous products, but with het-

erogeneous costs of search, finds that when search is ordered, prices must decline in

the order in which they are sampled.2

These seemingly contrary results suggest that search models should be tailored to

explain the appropriate economic phenomenon. Arbatskaya’s (2007) model applies

when price is the only deciding factor in a product purchase, as might be the case in

a farmer’s market, whereas the framework of Armstrong et al. (2009) is better suited

to a setting where consumers care about other product qualities, such as when het-

erogeneous brands vie for shelf space. Moreover, neither of these articles attempts to

address non-random search where different groups of consumers may follow different

search orders. Such a situation has broad application in the context of asymmetric

location oligopoly. Consider as an example, two competing nationwide, homogeneous

product retailers whose main difference is in the number of store locations (such a

situation might arise in an industry where one firm had a first-mover advantage).

If some consumers find it costly to visit a non-local store, the retailer with more

nationwide stores is more likely to be sampled first by more, though not necessarily

all, consumers. Another application concerns spatially differentiated retail establish-

1Zhou (2010) obtains similar results by extending this setup to completely ordered search.
2Arbatskaya’s search cost setup is related to the models of Benabou (1993) and Stahl (1996).
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ments selling essentially the same basket of goods—e.g., convenience store chains

sell many of the same goods as larger discount retailers or supermarkets, but cater

primarily to individuals with a high opportunity cost of shopping elsewhere.

We cast our study in the sequential search framework of Stahl (1989), in which the

good is homogeneous while consumer search cost heterogeneity is embodied via two

consumer types: shoppers who have no opportunity cost of time and non-shoppers

who engage in costly sequential search.3 We adjust the frequently used assumption

that all consumers freely and randomly choose the first firm to sample by supposing

that non-shoppers always sample their local firm first. Our main finding is that there

is a unique equilibrium in which the price distribution of the firm associated with

a larger local population first order stochastically dominates that of its competitor.

This finding generalizes a well known result established by Narasimhan (1988),4 but

differs from it in two key respects: (i) because we do not exogenously impose a

captive segment of consumers, the upper bound of price distributions can fall well

below the price that would prevail in a monopoly, and (ii) the limiting result when

there are no “informed” consumers is not necessarily that of Diamond (1971).

2 The model

Two firms, labeled 1 and 2, sell a homogeneous good. Firms have no capacity

constraints and an identical constant cost of zero of producing one unit of the good.

There is a unit mass of almost identical consumers with inelastic (unit) demand and

3In order to calculate explicit solutions and fully characterize our equilibria, we borrow from
Janssen et al. (2005) by assuming that consumers hold inelastic demands.

4This result is explored further in Deneckere et al. (1992) and Jing and Wen (2008). However,
unlike this note, both articles follow Narasimhan by supposing that non-shoppers behave like the
uninformed consumers in Varian’s (1980) model of sales—that is, their reservation price is not
derived optimally from the equilibrium price distribution.

2



valuation v > 0 for the good. A proportion µ ∈ (0, 1) of consumers are shoppers who

have no cost of search. The remaining 1−µ non-shoppers, pay a positive search cost

c ∈ (0, v) for each firm they visit except for their local firm, which they search first.

A fraction λ ∈ [0, 1] of the 1−µ non-shoppers is local to firm 1, while the remaining

1− λ are local to firm 2. Non-shoppers search sequentially with costless recall.

Firms and consumers play the following game. First, firms 1 and 2 simultaneously

choose prices taking into consideration their beliefs about the rival firm’s pricing

strategy and about consumer search behavior. A pricing strategy consists of a price

distribution Fi over a support with lower (upper) bounds p
i

(p̄i), where Fi(p) is the

probability that firm i = 1, 2 offers a price no higher than p. Once prices have been

realized, consumers choose optimal search strategies given their beliefs about each

Fi. Parameters v, c, µ, λ, as well as the rationality of all agents in the model are

commonly known.

3 Equilibrium analysis

We analyze the Sequential Equilibrium of this game. In this context, Sequential

Equilibrium requires that non-shoppers who observe an off-equilibrium price at their

local firm treat such deviations as “mistakes” when forming beliefs about the non-

local firm’s strategy. Thus, non-shoppers believe that the non-local firm plays its

equilibrium strategy at all information sets.

3.1 Consumer behavior

Shoppers, who can search freely, will sample both firms before making their purchase

decision. Moreover, because we impose a certain search order on non-shoppers, it
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suffices to consider their decision regarding whether or not to search the non-local

firm. It is well established that in the framework described above, the optimal search

rule is for a non-shopper who has freely observed the price at firm j to continue search

if and only if the observed price is higher than a reservation price, ri, which makes

him indifferent between searching firm i and stopping. This reservation price is then

defined as the solution to∫ ri

p
i

(ri − p)dFi(p) =

∫ ri

p
i

Fi(p)dp = c (1)

Note that reservation price ri corresponds to consumers who begin their search at

firm j and vice versa because consumers who begin at firm j must decide whether

or not to search firm i based on the price they observed at firm j and their beliefs

about firm i’s pricing strategy.

3.2 Firm pricing

Before characterizing the equilibrium of the game, we need to place certain limita-

tions on the way that firms may price in equilibrium.

Proposition 1. In equilibrium, the supports of the firm pricing distributions are

the same and do not have any breaks. Both supports are bounded from above by

p̄ = min {v, r1, r2} and at most one firm may have one atom at p̄. Suppose that an

atom exists in equilibrium. Then non-shoppers who sample firm i first, must stop

searching after observing a price of rj unless v < rj.

The proof of this proposition, is contained in the Appendix. The proposition

tells us that even if one firm is local for a larger proportion of non-shoppers, it would

nonetheless never offer a price higher than the largest possible price of its competitor,

nor a price high enough to induce its local non-shoppers to search further. Note
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that because a price equal to rj and strictly higher than v is only observed off the

equilibrium path, in equilibrium, non-shoppers whose first observation equals rj stop.

We next state our main result by describing the unique Sequential Equilibrium

of this game. The existence of an equilibrium follows by construction below, whereas

uniqueness proceeds directly from Proposition 1. Consider first λ = 1/2. This is

equivalent to random non-shopper search. The resulting equilibrium has been fully

established in the literature (e.g., Janssen et al. 2005, Proposition 1) and we do

not reproduce it here. Going forward, without loss of generality, we suppose that

λ ∈ (1/2, 1]—that is, firm 1 is local for a larger proportion of non-shoppers.

Proposition 2. Suppose that λ ∈ (1/2, 1]. There exists a unique Sequential Equilib-

rium where both firms distribute prices over support
[
p, p̄
]
, where p̄ = min {v, r∗2}, p =

λ(1−µ)
λ(1−µ)+µ p̄ and r∗1 and r∗2 are the equilibrium reservation prices for non-shoppers local

to firm 2 and firm 1 respectively. r∗2 = r2 (µ, λ, c) ≡ c
{

1− λ(1−µ)
µ

ln
[
1 + µ

λ(1−µ)

]}−1
if r2 (µ, λ, c) ≤ v and ∞ otherwise, while r∗1 =∞. Firm 1 distributes prices accord-

ing to F1 (p) = 1−λ(1−µ)
µ

(
1− p

p

)
on
[
p, p̄
)

with Pr (p1 = p̄) = (1−µ)(2λ−1)
λ(1−µ)+µ while firm 2

distributes prices according to F2 (p) = λ(1−µ)+µ
µ

(
1− p

p

)
.

Proof. In equilibrium, a firm must be indifferent between any price in its support.

Therefore, for any pi in the support of Fj, solving E πi
(
p
)

= E πi (pi, Fj (pi)) for Fj,

i 6= j ∈ {1, 2}, yields firm distribution functions:

F1 (p) =
1− λ (1− µ)

µ

(
1−

p

p

)
≤ λ (1− µ) + µ

µ

(
1−

p

p

)
= F2 (p) (2)

where the inequality follows from the assumption λ > 1/2 and is strict for p > p.

Moreover, because p̄1 = p̄2 = p̄, this implies that F1 has an atom at p̄.

Setting F2(p̄) = 1 to solve for p in terms of p̄ and substituting into F2(p) gives
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F2 (p) =
λ (1− µ) + µ

µ

[
1− λ (1− µ)

λ (1− µ) + µ

p̄

p

]
. (3)

When r2 ≤ v, p̄ = r2. Optimal search requires that Equation 1 holds. Substitut-

ing Equation 3 into Equation 1 and integrating to solve for r2, we get

r2 (µ, λ, c) = c

{
1− λ (1− µ)

µ
ln

[
1 +

µ

λ (1− µ)

]}−1
(4)

If r2 (µ, λ, c) ≤ v, r∗2 is defined by Equation 4. Because firms are not concerned with

prices above v, if r2 (µ, λ, c) > v, we define r∗2 to be positive infinity. Likewise, the

inequality in Equation 2 allows us to define r∗1 to be positive infinity as well.

In equilibrium, non-shoppers search their local firm and make a purchase there,

whereas shoppers purchase from the firm with the lower price. Because non-shoppers

always buy from their local firm, it is more costly for firm 1 to lower its price than

it is for firm 2. Firm 1 takes advantage of its location by running fewer sales and

pricing higher on average. When the cost of non-shopper search beyond the local

firm is infinite, as is implicit in the baseline model of Narasimhan (1988), p̄ = v.

However, as long as c is sufficiently low to make r∗2 < v, the monopoly price could

never prevail when shoppers exist in the market.

We would like to know how our model behaves as the location asymmetry ap-

proaches that of a completely ordered search framework such as that of Arbatskaya

(2007). First, note that r2 (µ, λ, c) is increasing in λ ∈ (1/2, 1].5 Knowing that p̄

is non-decreasing in λ, for any p ∈
[
p, p̄
)
, it is easy to show that F1 (µ, λ; p) and

F2 (µ, λ; p) are decreasing in λ.6 That is, for λ ∈ (1/2, 1], the price distributions for

5This follows directly from the fact that for all A ∈ (0, ∞), the function A ln (1 + 1/A), is
strictly increasing in A. Moreover, lim

A→0
A ln (1 + 1/A) = 0 and lim

A→∞
A ln (1 + 1/A) = 1. Setting

A = λ (1− µ) /µ we see that ∂r2 (µ, λ, c) /∂λ > 0 for λ ∈ (1/2, 1].
6For the sake of completeness, we note that r2 (µ, λ, c) is decreasing in µ, while, F1 (µ, λ; p) and

F2 (µ, λ; p) are non-decreasing in µ.
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both firms at a higher λ first order stochastically dominate their lower λ counter-

parts. Clearly, as firm 1 gains local non-shoppers, its profit increases. However, even

as firm 2 loses local non-shoppers, its ability to charge shoppers higher prices implies

that its profit loss is more than offset by firm 1’s profit gain (firm 2’s profit may even

rise for sufficiently large µ). In the first application mentioned in the introduction,

this finding suggests that nationwide firms competing in multiple, separable local

markets with varying market shares are better off maintaining asymmetric shares

across regions than they would be by sacrificing high share in one region in exchange

for market gains in a low share region.

When λ = 1, all non-shoppers search firm 1 first. Nevertheless, Propositions 1 and

2 apply, and as might be expected, price dispersion persists because µ > 0. That is,

as long as firms can capture a mass of consumers by undercutting their rivals’ prices,

below monopoly prices will be observed with positive probability. Surprisingly, as

the next proposition will show, when search is completely ordered (that is, λ = 1),

monopoly pricing may not prevail even if µ = 0.

Proposition 3. Suppose λ = 1 while µ = 0. The set of pure strategy equilibria7 can

be characterized as follows: p1 ∈ [0, v]. If p1 ∈ [0, v), p2 = p1−c, r∗2 = p1 = p2+c < v.

If p1 = v, p2 ∈ [v − c,∞), and r∗2 = min{v,∞}.

Proof. We restrict attention to pure strategy equilibria. Consider the strategies p1 ∈

[0, v) and p2 = p1−c. Given consumer (correct) beliefs, r2 (µ, λ, c) = p1 = p2+c < v,

so r∗2 = r2 (µ, λ, c). As in Proposition 1, existence entails that non-shoppers stop after

observing the reservation price (otherwise firm 1 always has an incentive to lower its

price). Consider any p2 > p1 − c. Then p1 < r2 (µ, λ, c) = p2 + c and firm 1 can

7In this case there is no completely mixed strategy equilibrium. Firm 1 will always play a pure
strategy in equilibrium. Even though firm 2 can play a mixed strategy in equilibrium, this does not
matter to consumers because they never observe its price.
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profitably deviate to p2 + c. Now suppose that p2 < p1− c. But then p1 > r2 (µ, λ, c)

so all consumers leave firm 1 and never return. Thus, firm 1 can profitably deviate

to p2 + c. Finally, when p1 = v, firm 2 may charge any price p2 > p1 − c. Given

consumer (correct) beliefs, r∗2 can be appropriately defined as min{v,∞}, so firm 1

has no incentive to deviate.

When λ = 1, there are multiple pure strategy equilibria where firm 2 undercuts

firm 1 by c. In such equilibria, because non-shoppers do not search, firm 1 would

like to charge v. However, because firm 2 makes no profit, it can charge any price.

By pricing below v− c, firm 2 raises the marginal benefit of search, causing r∗2 to fall

below v. In order to keep its local non-shoppers from searching firm 2, firm 1 has to

lower its price below v. Thus, an inactive firm can lead to below monopoly pricing

when all consumers have to pay to sample prices beyond the first one.8

4 Conclusion

We have followed the spirit of the ordered search literature by supposing that non-

shoppers sample their local firm first. We have not provided non-shoppers with an

option to choose whether or not to search their local firm first at a discounted, albeit

possibly positive search cost. Clearly, the present outcome would be a violation of

Weitzman’s (1979) Pandora’s rule for the majority of non-shoppers if the first price

sample were endogenously determined under the alternative framework. As such, one

direction for future research is the characterization of an asymmetric, homogeneous

product search equilibrium consistent with Pandora’s rule.

8This result resembles the rational-expectations model of Arbatskaya (2007), where an inactive
firm is required to sustain price dispersion in equilibrium.
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Appendix

Proof of Proposition 1. We prove this proposition using a series of claims. The

claims follow similarly to Propositions 2 through 5 in Narasimhan (1988). However,

various complications arise because our consumer counterpart to Narasimhan’s loyal

segment follows an optimal search rule.

Claim 1. v ≥ max{p̄1, p̄2} ≥ p
1

= p
2

= p ≥ 0.

Proof. Let γ be the proportion of non-shoppers who do not search after observing

a price of rj at their local firm i. Suppose p
1
< p

2
≤ v. Firm 1’s profit on [p

1
, p

2
)

equals

p1{µ+ λ(1− µ) + (1− λ)(1− µ)[1− F2(r1) + (1− γ) Pr(p2 = r1)]} (5)

which is increasing in p1, a contradiction. Now suppose that p
1
≤ v < p

2
. Then

for p1 ∈ [p
1
, v), firm 1’s profit is given by Equation (5), which is increasing in p1, so

it must be the case that p
1

= v. If p
1

= v < p
2
, then firm 2 makes zero profit on

its support, and would increase profits by shifting mass to v. If v < p
1
≤ p

2
, then

both firms make zero profits and either can increase profit by shifting mass to v, so

p
2
≤ p

1
. By a similar argument, p

2
≥ p

1
and v ≥ p

1
= p

2
= p.
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Firms will not charge prices below zero because these yield negative profit.9 Sim-

ilarly, at prices above v firms make zero profit. As a result, all consumers in the

market make a purchase.

Definition 1. We say that firms have a mutual atom when each firm has an atom at

the same price. We say that firms have a mutual break when each firm’s equilibrium

support has a break over the same price interval.

Claim 2. There are no mutual atoms.

Proof. Let αS be the proportion of shoppers who buy from firm 1 after having ob-

served the same price in both firms. Let αN be the proportion of non-shoppers who

buy from their local firm after having observed the same price in both firms. Suppose

that both firms have a mutual atom at p. When p1 = p2 = p, firm 1’s profit is given

by

p{αSµ+ λ(1− µ)[Ip<r2 + [γ + αN(1− γ)]Ip=r2 + αNIp>r2 ]

+ (1− λ)(1− µ)(1− αN)[(1− γ)Ip=r1 + Ip>r1 ]}
(6)

where I is an indicator function. Suppose that firm 1 sets p1 = p − ε instead of p.

Then profits become

(p− ε){µ+ λ(1− µ) + (1− λ)(1− µ)[(1− γ)Ip=r1 + Ip>r1 ]} (7)

Expression (7) is larger than Expression (6) for ε sufficiently small.

Suppose firm 2 chooses a price other than p. Lowering the price charged never

reduces the number of sales, so the loss to firm 1 from lowering the price by ε is at

most ε. However, when p is charged with positive probability, lowering the price by ε

will with positive probability lead to a gain and with complementary probability, at

worst lead to a loss of ε. Therefore, by shifting its atom at p to p− ε for sufficiently

9If p = 0, then there must be zero density at p = 0.
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small ε, firm 1 increases its expected profit, a contradiction. By a similar argument,

firm 2 will want to undercut a mutual atom for λ 6= 1.

For the case 1 − αS = αN = λ = 0, firm 1 does not have a profitable deviation,

but firm 2 does.

Claim 3. The only possible breaks in the equilibrium supports are:

(i) if rj = p̄i < p̄j = min{ri, v} there is a break at (p̄i, p̄j)

(ii) if r = ri = rj < p̄i = p̄j there may be a mutual break with lower bound r, and

(iii) if ri 6= rj and firm i has an atom at rj, there may be a mutual break with lower

bound rj.

Proof. Let S1 and S2 denote the equilibrium supports for firms 1 and 2 respectively.

Let p̂ = inf(S1 ∩ S2) and ˆ̂p = sup(S1 ∩ S2). Define H = (pd, pu) ∈ int(S1 ∩ S2).

Suppose first, without loss of generality, that in equilibrium, firm 2 has no support

over H, but that firm 1 does. Firm 1’s expected profit at p1 ∈ H is

p1{ µ[1− F2(p1)]

+ λ(1− µ){Ip1<r2 + [γ + (1− γ)[1− F2(p1)]]Ip1=r2 + [1− F2(p1)]Ip1>r2}

+ (1− λ)(1− µ){[1− F2(r1) + (1− γ) Pr(p2 = r1)]Ip1<r1

+ [1− F2(r1)]Ip1=r1 + [1− F2(p1)]Ip1>r1} }

(8)

As firm 1 raises p1 along H, its expected profit is increasing because F2(p1) is

constant along H (and equal to F2(r1) if r1 ∈ H). If r2 /∈ H, then firm 1 could

increase profits by shifting all mass in H slightly below pu (or to pu if firm 2 does

not have an atom there), a contradiction. If r2 ∈ H, then firm 1 can increase profits

by shifting all mass in (pd, r2) to slightly below r2, and all mass in (r2, p
u) either to

slightly below r2 or to pu, again contradicting the equilibrium. A similar argument
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applies when firm 1 has no support over H, but firm 2 does. This tells us that any

breaks in S1 ∩ S2 are mutual.

Now suppose that neither firm randomizes over H in equilibrium. Suppose first

that pd 6= r1, p
d 6= r2 and that neither firm has an atom at pd. Then either firm 1

has a strictly higher expected profit at pu (or slightly below r2 if r2 ∈ H) than at pd,

or firm 2 has a strictly higher expected profit at pu (or slightly below r1 if r1 ∈ H)

than at pd, or both, if neither firm has an atom at pu, contradicting the equilibrium.

Suppose that firm i has an atom at pd 6= rj. Because there are no mutual atoms,

firm i could increase profits by shifting its atom to pu (or slightly below pu if firm j

has an atom there, or slightly below rj if rj ∈ H).

If pd = rj 6= ri and firm i has no atom at pd, firm j’s expected profit will be

strictly higher at pu (or slightly below pu if firm i has an atom there, or slightly

below ri if ri ∈ H) than at pd. But if firm i does have an atom at pd, then it is

possible that profits are the same at pd and pu for each firm. If γ 6= 1, firm i can

profitably deviate by shifting its atom slightly below pd. In doing so, it retains 1− γ

non-shoppers who search after observing a price rj and have a positive probability

of purchasing from firm j. However, if γ = 1, neither firm might have a profitable

deviation. This may also be the case if, pd = r2 = r1.

By Claim 1, we know that both S1 and S2 have the same lower bound p, so

S1∆S2 ∈ (min{p̄1, p̄2},max{p̄1, p̄2}]. Suppose, without loss of generality, that p̄1 >

p̄2. At p1 ∈ (p̄2, p̄1], firm 1’s expected profit is p1λ(1 − µ)(Ip1<r2 + γIp1=r2). If

p̄1 > r2, then firm 1 can increase profits by shifting mass in (r2, p̄1] to r2 or slightly

below it if γ = 0. If r2 ≥ p̄1, then profits are strictly increasing in p1 ∈ (p̄2, p̄1), so

firm 1 could increase profits by shifting mass in (p̄2, p̄1] to min{r2, v} − ε for ε > 0

sufficiently small. As a result, S1∆S2 = {min{v, r2}}. If firm 2 has no atom at p̄2,
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firm 1’s expected profit at p̄1 is p̄1λ(1 − µ), strictly higher than its expected profit

of p̄2λ(1− µ) at p̄2, a contradiction. If firm 2 has an atom at p̄2 6= r1, because there

are no mutual atoms, firm 2 can profitably shift the atom to slightly below p̄1 (or

slightly below r1 if r1 ∈ (p̄2, p̄1]). However, if γ = 1, firm 2 has an atom at p̄2 = r1

and F1(r1) is large enough, then neither firm might have a profitable deviation. A

similar argument applies when p̄2 > p̄1.

Claim 4. Firm i does not have an atom in the lower bound or the interior of firm

j’s equilibrium support, except possibly at rj.

Proof. Suppose without loss of generality that firm 2 has an atom at p ∈ S1\{p̄1},

and suppose that p 6= r1. Firm 1’s expected profit at p− ε when firm 2 charges p is

given by Expression (7), whereas its expected profit at p+ ε is

(p+ ε)λ(1− µ)(Ip+ε<r2 + γIp+ε=r2) (9)

Expression (9) is smaller than Expression (7) for ε sufficiently small.

Firm 1 can increase expected profits by shifting mass from (p2 − ε, p2 + ε] to

p2 − ε for the following reason. For any price that firm 2 charges, shifting mass to

p− ε never reduces the number of sales for firm 1, so it loses at most 2ε. However,

when p is charged with positive probability, lowering the price by 2ε or less will, with

positive probability, lead to a gain, and with complementary probability, at worst,

lead to a loss of 2ε. Therefore, by shifting its mass between p and p+ ε to p− ε for

sufficiently small ε, firm 1 increases its expected profit, a contradiction.

Claim 5. If p̄1 = p̄2 = p̄ then either

(i) p̄ = min{v, r1, r2}, the supports have no breaks, and at most one firm can have

an atom at p̄, or
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(ii) p̄ = min{v,max{r1, r2}}, there is a mutual break above min{r1, r2} < p̄, firm i

has an atom at rj, and firm j has an atom at p̄.

Proof. Suppose that p̄1 = p̄2 = p̄ and neither firm has an atom at p̄. From Claims 1

and 4 we know that p < p̄ ≤ v. Suppose p̄ < min{v, r2}. At p̄, firm 1 expects profit

of p̄λ(1− µ). For λ 6= 0, by raising its price to min{v, r2}− ε, firm 1 expects to gain

[min{v, r2} − ε− p̄]λ(1−µ) > 0 for sufficiently small ε > 0, a contradiction. Suppose

instead p̄ > min{v, r2}. But then at p̄ firm 1 expects no profit, a contradiction, so

p̄ = min{v, r2}. If λ = 0, firm 1 expects no profit at p̄ unless either p̄1 < p̄2 or firm

2 has an atom at p̄. By a similar argument, p̄ = min{v, r1}, so p̄ = min{v, r1, r2}.

From Claim 2, we know that at most one firm can have an atom at p̄, say firm

j. If γ = 1 or v < ri, then following the argument in the previous paragraph,

p̄ = min{v, ri}. Otherwise, firm j cannot have an atom at p̄ (using similar reasoning

to that in the proof of Claim 3). Moreover, if rj ≥ ri, then p̄ = min{v, r1, r2} and

from Claim 3, we know that the firm supports have no breaks. Conversely, suppose

rj < ri (and therefore rj < v). Without loss of generality, let i = 1. From Claim 4

we know that firm 2 cannot have an atom at r2. At r2, firm 1 expects profit of

r2{[µ+ λ(1− µ)(1− γ)][1− F2(r2)] + λ(1− µ)γ} (10)

At p1 ∈ (r2, p̄), firm 1 expects profit of

p1[µ+ λ(1− µ)][1− F2(p1)] (11)

But because p1 ∈ (r2, p̄), by definition, 0 < F2(r2) ≤ F2(p1), so for a small enough

p1, Expression (10) will be strictly greater than Expression (11) as long as γ > 0.

Therefore, r2 must be the lower bound for a break in S1, so we must be in case (iii)

of Claim 3. The second to last paragraph in the proof of Claim 3 implies that this

equilibrium only exists for γ = 1.
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Claim 5 allows us to narrow down the possible supports to item (i) in Claim 3 and

the two items in Claim 5. It immediately follows that existence of an atom requires

non-shoppers who observe the reservation price in equilibrium to stop searching.

Below, we restrict analysis to equilibria where v ≤ ri implies that v ≤ rj, j 6= i.

That is, in the remainder of our analysis, we do not examine the potential existence

of equilibria where v is sufficiently large not to influence the search decisions of

consumers local to one firm, yet small enough to constrain the decisions of consumers

local to the other. Therefore, for the remainder of this proof, suppose that v does

not bind in equilibrium. The next two claims rule out item (i) in Claim 3 and item

(ii) in Claim 5. The analysis proceeds similarly in the case that v does bind and is

left to the reader.

Claim 6. In equilibrium, p̄1 = p̄2.

Proof. From Claims 3 and 4, we know that an equilibrium where p̄1 6= p̄2 is charac-

terized by rj = p̄i < p̄j = ri = Sj∆Si. Additionally, each firm i has an atom at p̄i.

We show that an equilibrium characterized as such, does not exist, thereby ruling

out item (i) in Claim 3.

Without loss of generality, suppose λ ∈ (1/2, 1]. Then, F1(p) and F2(p) are

represented by Equation (2) over
[
p, p̄1 = r∗2

)
, where r∗i represents the equilibrium

reservation price for non-shoppers local to firm j 6= i. Note that, λ > 1/2⇔ F1(p) <

F2(p) on
(
p, r∗2

)
, so in equilibrium, it must be that r∗2 = p̄1 < p̄2 = r∗1. A complete

solution to this equilibrium requires the following set of equations to hold.

EΠ1(p) = EΠ1(p1, F2(p1))

⇔ [µ+ λ(1− µ)]p = {µ[1− F2(p1)] + λ(1− µ)}p1
(12)
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EΠ1(p) = EΠ1(r
∗
2, F2(r

∗
2))

⇔ [µ+ λ(1− µ)]p = [µPr(p2 = r∗1) + λ(1− µ)]r∗2

(13)

EΠ2(p) = EΠ2(p2, F1(p2))

⇔ [1− λ(1− µ)]p = {µ[1− F1(p2)] + (1− λ)(1− µ)}p2
(14)

EΠ2(p) = EΠ2(r
∗
1)

⇔ [1− λ(1− µ)]p = (1− λ)(1− µ)r∗1

(15)

∫ r∗2

p

F1(p)dp+ (r∗1 − r∗2) = c (16)

∫ r∗2

p

F2(p)dp = c (17)

EΠ1(r
∗
2, F2(r

∗
2)) > EΠ1(r

∗
1 − ε, F2(r

∗
1 − ε)) ∀ε ∈ (0, r∗1 − r∗2)

⇔ [µPr(p2 = r∗1) + λ(1− µ)]r∗2 ≥ r∗1 Pr(p2 = r∗1)[µ+ λ(1− µ)]
(18)

Pr(p1 = r∗2) = 1− lim
ε→0−

F1(r
∗
2 − ε) ∈ (0, 1) (19)

Pr(p2 = r∗1) = 1− F2(r
∗
2) ∈ (0, 1) (20)

We use the following procedure to attempt to find an equilibrium. First, we use

Equation (12) and Equation (14) to solve for F2(p) and F1(p) respectively, in terms of

p. Plugging F2(p) into Equation (17) and using Equation (13) to solve for p we obtain

r∗2 in terms of Pr(p2 = r∗1). Plugging F1(p) into Equation (19) yields Pr(p1 = r∗2)

in terms of Pr(p2 = r∗1). Rewriting F1(p) in terms of Pr(p2 = r∗1) and plugging into

Equation (16) yields r∗1 in terms of Pr(p2 = r∗1). Finally, using Equation (15) to

solve for p and setting this equal to the solution obtained from Equation (13) we can

rewrite r∗1 as an alternate function of Pr(p2 = r∗1). Setting the two expressions for
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r∗1 equal to each other, we can now solve for Pr(p2 = r∗1) in terms of the exogenous

parameters. We can then use this to see if Inequality (18) holds. Using the procedure

described, the solution to Pr(p2 = r∗1) obtains implicitly from the following equation:

c+ r∗2

{
1− [1− λ(1− µ)] [1− Pr(p2 = r∗1)]

µ+ λ(1− µ)

+
[1− λ(1− µ)] [λ(1− µ) + µPr(p2 = r∗1)]

µ [µ+ λ(1− µ)]
ln

[
µ+ λ(1− µ)

λ(1− µ) + µPr(p2 = r∗1)

]}
−r
∗
2 [λ(1− µ) + µPr(p2 = r∗1)] [1− λ(1− µ)]

[µ+ λ(1− µ)] (1− λ)(1− µ)
= 0

(21)

where r∗2 is a function of Pr(p2 = r∗1) and the underlying parameter values. Numer-

ically, for every permissible value of µ and λ and some Pr(p2 = r∗1) ∈ (0, 1), it is

possible to check if Equation (21) holds. Doing so, we find that there is no value of

Pr(p2 = r∗1) ∈ (0, 1) that would lead Equation (21) to hold, a contradiction.

In Figure 1 we plot the left hand side of Equation (21) over all permissible values

of µ and λ assuming that Pr(p2 = r∗1) = 1/2. Observe that the expression is always

strictly below zero. A simple Mathematica file that allows readers to plot the same

expression for arbitrary values of Pr(p2 = r∗1) is available upon request.

Claim 7. There are no breaks in the equilibrium supports.

Proof. From Claims 3 through 6, we know that an equilibrium with breaks is charac-

terized by ri < rj = p̄ and a mutual break over (ri, p
u) for pu ∈ (ri, p̄). Additionally,

each firm i has an atom at rj, j 6= i. Once again assuming that λ ∈ (1/2, 1], and

solving for equilibrium following a similar approach to the one used to prove Claim 6,

we can obtain an implicit solution to F1(r
∗
2) by setting two expressions for r∗1 equal

to each other to find that no solution to F1(r
∗
2) ∈ (0, 1) exists, a contradiction. For

completeness, we note that the implicit solution for F1(r
∗
2) can be represented by the

following equation:
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pu
{

1− 1− [µ+ λ(1− µ)]F1(r
∗
2)

(1− λ)(1− µ)

}
− (pu − r∗2)F1(r

∗
2) [µ+ λ(1− µ)]

[µ+ λ(1− µ)]

{
c− 1− λ(1− µ)F1(r

∗
2)

µ

{
r∗2 − p

[
1 + ln

(
r∗2 − p

)]}
−pu

[
F1(r

∗
2)−

1

µ+ λ(1− µ)

]
ln

{
1− [µ+ λ(1− µ)]F1(r

∗
2)

(1− λ)(1− µ)

}}
= 0

(22)

where r∗2 and pu are both functions of F1(r
∗
2) and the underlying parameters. A

Mathematica file that allows readers to plot the left hand side of Equation (22) for

arbitrary values of F1(r
∗
2) is available upon request.
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Figure 1: Left hand side of Equation (21) for Pr(p2 = r∗1) = 1/2 over all µ ∈ (0, 1)
and λ ∈ (1/2, 1].
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